VTT-006, an anti-mitotic compound, binds to the Ndc80 complex and suppresses cancer cell growth in vitro

Leena J Laine, Jenni H E Mäki-Jouppila, Emma Kutvonen, Pekka Tiikkainen, Thomas K M Nyholm, Jerry F Tien, Neil T Umbreit, Ville Härmä, Lila Kallio, Trisha N Davis, Charles L Asbury, Antti Poso, Gary J Gorbsky, Marko J Kallio

    Research output: Contribution to journalArticleScientificpeer-review

    7 Downloads (Pure)

    Abstract

    Hec1 (Highly expressed in cancer 1) resides in the outer kinetochore where it works to facilitate proper kinetochore-microtubule interactions during mitosis. Hec1 is overexpressed in various cancers and its expression shows correlation with high tumour grade and poor patient prognosis. Chemical perturbation of Hec1 is anticipated to impair kinetochore-microtubule binding, activate the spindle assembly checkpoint (spindle checkpoint) and thereby suppress cell proliferation. In this study, we performed high-throughput screen to identify novel small molecules that target the Hec1 calponin homology domain (CHD), which is needed for normal microtubule attachments. 4 million compounds were first virtually fitted against the CHD, and the best hit molecules were evaluated in vitro. These approaches led to the identification of VTT-006, a 1,2-disubstituted-tetrahydro-beta-carboline derivative, which showed binding to recombinant Ndc80 complex and modulated Hec1 association with microtubules in vitro. VTT-006 treatment resulted in chromosome congression defects, reduced chromosome oscillations and induced loss of inter-kinetochore tension. Cells remained arrested in mitosis with an active spindle checkpoint for several hours before undergoing cell death. VTT-006 suppressed the growth of several cancer cell lines and enhanced the sensitivity of HeLa cells to Taxol. Our findings propose that VTT-006 is a potential anti-mitotic compound that disrupts M phase, impairs kinetochore-microtubule interactions, and activates the spindle checkpoint.

    Original languageEnglish
    Pages (from-to)134-153
    Number of pages20
    JournalOncoscience
    Volume8
    DOIs
    Publication statusPublished - 2021
    MoE publication typeA1 Journal article-refereed

    Fingerprint

    Dive into the research topics of 'VTT-006, an anti-mitotic compound, binds to the Ndc80 complex and suppresses cancer cell growth in vitro'. Together they form a unique fingerprint.

    Cite this