How to Reduce Charge Recombination in Organic Solar Cells: There are Still Lessons to Learn from P3HT:PCBM

Sebastian Wilken*, Dorothea Scheunemann, Staffan Dahlström, Mathias Nyman, Jürgen Parisi, Ronald Österbacka

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

26 Citations (Scopus)
59 Downloads (Pure)

Abstract

Suppressing charge recombination is key for organic solar cells to become commercial reality. However, there is still no conclusive picture of how recombination losses are influenced by the complex nanoscale morphology. Here, new insight is provided by revisiting the P3HT:PCBM blend, which is still one of the best performers regarding reduced recombination. By changing small details in the annealing procedure, two model morphologies are prepared that vary in phase separation, molecular order, and phase purity, as revealed by electron tomography and optical spectroscopy. Both systems behave very similarly with respect to charge generation and transport, but differ significantly in bimolecular recombination. Only the system containing P3HT aggregates of high crystalline quality and purity is found to achieve exceptionally low recombination rates. The high‐quality aggregates support charge delocalization, which assists the re‐dissociation of interfacial charge‐transfer states formed upon the encounter of free carriers. For devices with the optimized morphology, an exceptional long hole diffusion length is found, which allows them to work as Shockley‐type solar cells even in thick junctions of 300 nm. In contrast, the encounter rate and the size of the phase‐separated domains appear to be less important.
Original languageEnglish
Article number2001056
JournalAdvanced Electronic Materials
Volume7
Issue number5
DOIs
Publication statusPublished - Mar 2021
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'How to Reduce Charge Recombination in Organic Solar Cells: There are Still Lessons to Learn from P3HT:PCBM'. Together they form a unique fingerprint.

Cite this