Flexible Micropillar Electrode Arrays for In Vivo Neural Activity Recordings

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2019-05-17
Department
Department of Electronics and Nanoengineering
University of Chinese Academy of Sciences
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Small, articlenumber 1900582
Abstract
Flexible electronics that can form tight interfaces with neural tissues hold great promise for improving the diagnosis and treatment of neurological disorders and advancing brain/machine interfaces. Here, the facile fabrication of a novel flexible micropillar electrode array (µPEA) is described based on a biotemplate method. The flexible and compliant µPEA can readily integrate with the soft surface of a rat cerebral cortex. Moreover, the recording sites of the µPEA consist of protruding micropillars with nanoscale surface roughness that ensure tight interfacing and efficient electrical coupling with the nervous system. As a result, the flexible µPEA allows for in vivo multichannel recordings of epileptiform activity with a high signal-to-noise ratio of 252 ± 35. The ease of preparation, high flexibility, and biocompatibility make the µPEA an attractive tool for in vivo spatiotemporal mapping of neural activity.
Description
Tarkista embargo, kun artikkeli julkaistu.
Keywords
electrocorticography, epilepsy, flexible electronics, neural recording, subdural electrodes
Other note
Citation
Du , M , Guan , S , Gao , L , Lv , S , Yang , S , Shi , J , Wang , J , Li , H & Fang , Y 2019 , ' Flexible Micropillar Electrode Arrays for In Vivo Neural Activity Recordings ' , Small , vol. 15 , no. 20 , 1900582 . https://doi.org/10.1002/smll.201900582