Oxygen ion energization at Mars: Comparison of MAVEN and Mars express observations to global hybrid simulation

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Date
2018
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
1678-1689
Series
Journal of Geophysical Research: Space Physics, Volume 123, issue 2
Abstract
We study oxygen ion energization in the Mars‐solar wind interaction by comparing particle and magnetic field observations on the Mars Atmosphere and Volatile EvolutioN (MAVEN) and Mars Express missions to a global hybrid simulation. We find that large‐scale structures of the Martian‐induced magnetosphere and plasma environment as well as the Mars heavy ion plume as seen by multispacecraft observations are reproduced by the model. Using the simulation, we estimate the dynamics of escaping oxygen ions by analyzing their distance and time of flight as a function of the gained kinetic energy along spacecraft trajectories. In the upstream region the heavy ion energization resembles single‐particle solar wind ion pickup acceleration as expected, while within the induced magnetosphere the energization displays other features including the heavy ion plume from the ionosphere. Oxygen ions take up to 80 s and travel the distance of 20,000 km after their emission from the ionosphere to the induced magnetosphere or photoionization from the neutral exosphere before they have reached energies of 10 keV in the plume along the analyzed spacecraft orbits. Lower oxygen ion energies of 100 eV are reached faster in 10–20 s over the distance of 100–200 km in the plume. Our finding suggests that oxygen ions are typically observed within the first half of their gyrophase if the spacecraft periapsis is on the hemisphere where the solar wind convection electric field points away from Mars.
Description
Keywords
Mars, solar wind, ion escape, ion energization, plume, induced magnetosphere
Other note
Citation
Jarvinen , R , Brain , D A , Modolo , R , Fedorov , A & Holmström , M 2018 , ' Oxygen ion energization at Mars: Comparison of MAVEN and Mars express observations to global hybrid simulation ' , Journal of geophysical research: Space physics , vol. 123 , no. 2 , pp. 1678-1689 . https://doi.org/10.1002/2017JA024884