Design of research oriented cylinder head for a heavy duty engine

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
Insinööritieteiden korkeakoulu | Master's thesis
Date
2017-10-30
Department
Major/Subject
Computational Fluid Modeling
Mcode
MEC-E2010
Degree programme
Master’s Programme in Mechanical Engineering
Language
en
Pages
89+3
Series
Abstract
The swirl flow is considered beneficial to enhance air-fuel mixing in CI engines during compression stroke as the piston reaches TDC, and helps in faster burn during combustion phase. Contrary to that, with the advancement of highly pressurized fuel injection systems and optimized types of IC engines like dual fuel engine demands for low swirl or preferably no swirl intake configuration is prevailing. The swirl structure induces by intake port differs from other flow structures like tumble; swirl not only survives during compression stroke but also throughout the expansion stroke. Therefore, swirl influences spray evolution and evaporation process during combustion and affect heat release due to the crumbling of the large-scale structure into small scale by adding more turbulence. This thesis work is aimed at designing, performing steady-state CFD analysis, and exercising additive manufacturing technique for a new single-cylinder research-oriented cylinder head with no induced swirl flow. The study also incorporates inclusive evaluation of flow structures produced by existing model of cylinder head through computational fluid analysis by employing Star-CCM+ software and experimental validation; then conjunction with that inquisition a new directed port model is devised. In addition, new ports position is designed, analyzed, and final model is selected based on admissible results. The new exhaust ports, cooling channels, and the main body of the cylinder head with appropriate thickness values are also designed. Additive manufacturing is a customized fabrication process to produce cost-effective products. AM has completely revolutionized current manufacturing techniques with a diverse selection of methods for different materials. Selective laser sintering is one of the powders based AM techniques with a range of available materials as polymers and metals used to contrive good quality densely structured light parts with flexible, interlocking and functional features. Therefore, SLS technique is adopted for new cylinder head manufacturing for later experimentally check of swirl flow.
Description
Supervisor
Larmi, Martti
Thesis advisor
Kaario, Ossi
Keywords
design, CFD, dual fuel, additive manufacturing, cylinder head
Other note
Citation