Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF2(111) as a reference surface

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
School of Science | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2002
Major/Subject
Mcode
Degree programme
Language
en
Pages
235417/1-10
Series
Physical Review B, Volume 66, Issue 23
Abstract
By combining experimental dynamic scanning force microscope (SFM) images of the CaF2(111) surface with an extensive theoretical modeling, we demonstrate that the two different contrast patterns obtained reproducibly on this surface can be clearly explained in terms of the change of the sign of the electrostatic potential at the tip end. We also present direct theoretical simulations of experimental dynamic SFM images of an ionic surface at different tip-surface distances. Experimental results demonstrate a qualitative transformation of the image pattern, which is fully reproduced by the theoretical modeling and is related to the character of tip-induced displacements of the surface atoms. The modeling of the image transformation upon a systematic reduction of the tip-surface distance with ionic tips allows an estimate of the tip-surface distance present in experiment, where 0.28–0.40 nm is found to be optimal for stable imaging with well-defined atomic contrast. We also compare the modeling with ionic tips to results for a pure silicon tip. This comparison demonstrates that a silicon tip can yield only one type of image contrast and that the tip-surface interaction is not strong enough to explain the image contrast observed experimentally. The proposed interpretation of two types of images for the CaF2(111) surface can also be used to determine the chemical identity of imaged features on other surfaces with similar structure.
Description
Keywords
scanning force microscopes, CaF2(111) surface
Other note
Citation
Foster, Adam S. & Barth, Clemens & Shluger, Alexander L. & Nieminen, Risto M. & Reichling, Michael. 2002. Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF2(111) as a reference surface. Physical Review B. Volume 66, Issue 23. 235417/1-10. ISSN 1550-235X (electronic). DOI: 10.1103/physrevb.66.235417.